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1. Introduction

It has been known that there are problems in the construction of consistent interactions

for massless higher spin gauge fields, though there are physically acceptable free field

Lagrangian for them [1 – 4]. The Lagrangian can be obtained by postulating the gauge

invariance which eliminates unphysical degrees of freedom [5]. A large amount of work has

been done to construct interacting massless higher spin gauge field theories. Many attempts

of them have encountered difficulties associated with requirements of gauge invariances [6 –

10], though there are some consistent interacting theories [11 – 13]. It is worthwhile to try

to build interacting massless higher spin gauge field theories by a new approach.

In the previous paper [14], we have studied a matrix model as a new approach to

formulate massless higher spin gauge field theory. As a first step towards constructing

the theory, we have shown that the free equations of motion of bosonic massless higher

spin gauge fields can be derived from those of the matrix model. This is based on a

new interpretation of matrix models [15]. In [15], the authors have introduced a new

interpretation of matrix models, in which matrices represent differential operators on a
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curved spacetime, and have shown that the vacuum Einstein equation can be obtained

from the equations of motion of a matrix model. An advantage of this formalism is that

the matrix model possesses gauge invariances manifestly, which are embedded in the unitary

symmetry of the matrix model. Therefore it is interesting to analyze interacting massless

higher spin gauge field theory using the matrix model.

In this paper, we study the relation between a supermatrix model and the free 4D,

N = 1 supersymmetric field theory of massless supermultiplet with spins (3, 5/2) on

the basis of [16]. In [16], the authors have extended the formalism in [15] to include

supersymmetric field theories by replacing matrices by supermatrices in the matrix model.

Furthermore, they have shown that solutions of the equations of motion for the 4D, N = 1

supergravity satisfy the equations of motion of the supermatix model. In this paper, we

generalize their analysis to higher spin gauge field theory of a massless supermultiplet with

spins (3, 5/2). In order to do this, we construct both on-shell and off-shell formulation for

the free 4D, N = 1 supersymmetric field theory of a massless supermultiplet with spins (3,

5/2) in terms of superfields.1 We show that solutions of the equations of motion for the

supermultiplet satisfy the equations of motion of the supermatrix model. The formulations

are quite similar to the superfield formulations of supergravity: In on-shell formulation,

the equations of motion for the supermultiplet can be expressed as a constraint on field

strengths. The superspace Bianchi identities subject to off-shell constraints are solved and

superfield strengths are expressed by a set of superfields.

There are two ways to construct superfield formulations of supersymmetric field the-

ories [17]: (1) One way is to study the off-shell representation to determine the linearized

formulation in terms of constraint-free superfields and then construct covariant derivatives.

(2) Another way is to start by postulating the existence of covariant derivative, and then

determine what constraints they must satisfy and solve them in terms of a set of super-

fields. An off-shell superfield formulation of massless higher spin gauge field theory has

been constructed [18] in the way (1). The formulation we construct in this paper is in the

way (2).

There is another motivation for our study. Massless higher spin fields are expected

to appear in the tensionless limit of string theory, since mass squared of them are all

proportional to the string tension. On the other hand, matrix models are expected to be

a nonperturbative formulation of string theory. Therefore our study may lead to further

understanding of nonperturbative aspects of string theory.

The organization of this paper is as follows. In section 2, we briefly review the results

of [16]. In section 3, we construct an on-shell formulation of a massless supermultiplet

with spins (3, 5/2) in terms of superfield. In section 4, we study the relation between

a supermatrix model and the superfield formulation of the supermultiplet. We show that

solutions of the equations of motion for the supermultiplet satisfy the equations of motion of

the supermatrix model. Section 5 is devoted to conclusions and future works. In appendix

A, we summarize the on-shell constraints. In appendix B, we give the explicit forms of the

1In four dimensional spacetime, all higher spin fields can be described either by totally symmetric tensor

or totally symmetric tensor-spinor fields. In this paper, we will restrict our consideration to four dimensional

field theories.
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superspace Bianchi identities subject to the on-shell constraints. In appendix C, we give

the results of the off-shell superfield formulation.

2. Supermatrix model

2.1 New interpretation of supermatrix model

In [15], a new interpretation of matrix models has been proposed in which matri-

ces represent differential operators on a D dimensional curved space. Matrices act as

Endomorphisms on a vector space, which means matrices map a vector space to itself.

On the contrary, covariant derivatives map a tensor field of rank-n to a tensor field of

rank-(n + 1). In order to interpret differential operators as matrices, we should prepare a

vector space V which contain at least tensor fields of any rank. In [15], the authors have

shown that such a space can be given by the space of functions on the principal Spin(D)

bundle over a base manifold M . Furthermore, they have considered the large N reduced

model of pure Yang-Mills theory as the matrix model. Applying this new interpretation

to the matrix model, they have shown that the vacuum Einstein equation can be derived

from the equations of motion of the matrix model.

However, supergravity cannot be embedded in the usual bosonic matrix model because

there are no Grassmann variables in the matrix model. Thus, in order to describe super-

gravity by matrix models, we need to extend V to include Grassmann variables. It has

been shown that this is implemented by extending manifold M to a supermanifold M and

taking V to be the space of functions on the principal Spin(D) bundle over M [16]. In this

extension, matrices are replaced by supermatrices, and covariant derivatives are replaced

by supercovariant derivatives. In [16], the authors have considered the supermatrix model

which is obtained by replacing matrices by supermatrices in the Large-N reduced model

of pure Yang-Mills action,2

S = −
1

4
Str

(

[Aa,Ab][A
a,Ab]

)

, (2.2)

where Aa are hermitian and Grassmann even supermatrices with vector index. This action

has SO(D) Lorentz symmetry and superunitary symmetry U(Ne|No).
3 Applying the new

2We can consider the supersymmetric version of the supermatrix model, which is the supermatrix gen-

eralization of IIB matrix model [21],

S = −
1

4
Str[Aa,Ab][A

a
,Ab] +

1

2
StrΨγ

a[Aa, Ψ], (2.1)

where Aa are Grassmann even supermatrices and Ψ are Grassmann odd supermatrices. This action has

global N = 2 supersymmetry, but we could not understand the meanings of global N = 2 supersymmetry

of this model in the new interpretation. Thus, we restrict our consideration to (2.2).
3An even supermatrix A can be written as

A =

 

A1 B1

B2 A2

!

, (2.3)

where A1 are Ne × Ne, A2 are No × No bosonic matrices and B1 are No × Ne, B2 are Ne × No fermionic

matrices.
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interpretation to this supermatrix model, the authors have shown that solutions of the

equations of motion for the D = 4, N = 1 supergravity satisfy the equations of motion of

the supermatrix model.

2.2 Massless higher spin fields

Let us see that there is a possibility that the supermatrix model involves the degrees of

freedom of massless higher spin gauge fields. Before we begin discussing massless higher

spin fields, we explain our notations. The coordinates of a superspace M are expressed as

zM = (xm, θµ), where xm(m = 1, . . . ,D) are bosonic and θµ(µ = 1, . . . ,Ds) are fermionic

components. Ds is the dimension of spinor representation of Spin(D). Letters M =

(m,µ) denote curved space indices and A = (a, α) denote local Lorentz indices. The

supercovariant derivative ∇A is defined as

∇A = eA
M (z)(∂M + ωM

bc(z)Obc), (2.4)

where eA
M (z) is the supervielbein and ωM

bc(z) is the superspin connection. Notice that

∇A maps a rank-n tensor to a rank-(n+1) tensor and Oab acts on the local Lorentz indices

of these tensors. Therefore we have

[Oab,∇c] =
1

2
(δac∇b − δbc∇a), (2.5)

[Oab,∇α] = (γab)α
β∇β, (2.6)

in this setting, which will be used later.

Since each component of supermatrices Aa acts on the functions on the principal

Spin(D) bundle over M as an Endomorphism, in general, Aa can be expanded as

Aa = i∇a + aa(z) +
i

2
{ba

B(z),∇B} +
i

2
{ωa

bc(z),Obc} +
i2

2
{ea

BC(z),∇B∇C} + · · · , (2.7)

where i and anticommutator {} are introduced to make Aa hermitian supermatrices.4

Terms higher than first order with respect to the operators ∇A and Oab can be taken to be

symmetric (or antisymmetric) under permutations of the operators, because antisymmetric

(or symmetric) part can be absorbed in the term that is the lower order in ∇A and Oab.

We consider the expansion as a sum of homogeneous polynomials of ∇A and Oab, whose

coefficients are identified with massless higher spin gauge fields. Coefficients of the first

order homogeneous polynomial will express gauge fields of the supermultiplet (2, 3/2), and

those of the second order one will express gauge fields of the supermultiplet (3, 5/2) and

so on. The number of independent components of higher spin gauge fields grows rapidly

with degree in ∇A and Oab.

4The formulation which has been given in [9] is similar to the one we use in this paper. In [9], the

authors have introduced the differential one-form which is expanded in terms of the ordinary derivatives

and the Lorentz generators. Thus, the components of the one-form are close to the matrices (2.7) in the

case of flat spacetime. However, we can find two differences. One is that we have found the way to derive

the equations of motion of massless higher spin fields. Another is that we have introduced the terms higher

than second order in the Lorentz generators.
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If the supermatrix model has the degrees of freedom of massless higher spin fields, the

gauge symmetries associated with those fields should be included. We find that the symme-

tries can be realized as the superunitary symmetry of the supermatrix model. Originally,

the superunitary symmetry is written as

δAa = i[Λ,Aa], (2.8)

where Λ is a N ×N hermitian supermatrix. In the new interpretation, Λ becomes a scalar

operator expanded in terms of ∇A and Oab.

Let us check how gauge transformations are generated by Λ in the case of the super-

multiplet (3, 5/2). In order to deal with this case, we need to keep track of the following

terms

Aa = i∇a +
(i)2

2
ea,

bc(∇b∇c + ∇c∇b) +
(i)2

2
ea,

cγ(∇c∇γ + ∇γ∇c) + · · · . (2.9)

We take Λ as Λ = λcγ(∇c∇γ + ∇γ∇c), then (2.8) becomes

δAa = (∇aλ
cγ)(∇c∇γ + ∇γ∇c) + · · · . (2.10)

Thus ea,
cγ transforms as

δea,
cγ = ∇aλ

cγ + · · · . (2.11)

This can be considered as the supergauge transformation for the spin-5/2 field.

2.3 Superfield formulation

In order to study the relation between the supermatrix model and supersymmetric field

theories of massless higher spin supermultiplets, we should compare the equations of motion

of the supermatrix model with those of the supermultiplets. Since the local fields which

appear in (2.7) live in superspace, the equations of motion of the supermatrix model are

written in terms of superfields. Thus, we should write the equations of motion of massless

higher spin supermultiplets in terms of superfields to compare with the results of the super-

matrix model. Namely, we should construct a superfield formulation of the supermultiplets.

Recall that for supergravity, we can construct superfield formulation by starting with the

supercovariant derivative ∇A, and then imposing constraints on the field strengths which

are defined as the coefficients of the operators ∇A and Oab in the commutators of ∇A,

[∇A,∇B} = CAB
C(z)∇C + RAB

cd(z)Ocd. (2.12)

The equations of motion for supergravity are expressed as a constraint on the torsion tensor.

It seems that we can construct superfield formulation for supermultiplets of massless higher

spin fields in the same way. We consider (2.7) as the supercovariant derivative with vector

index. We postulate the existence of the supermatrices with spinor index,

Aα = i∇α+aα(z)+
i

2
{bα

B(z),∇B}+
i

2
{ωα

bc(z),Obc}+
i2

2
{eα

BC(z),∇B∇C}+· · · . (2.13)
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We can regard that the supermatrices (2.7) and (2.13) as the supercovariant derivative

for massless higher spin fields. The field strengths are defined as the coefficients of the

operators ∇A and Oab in the commutators of (2.7) and (2.13).

In the next section, we will construct superfield formulation for the free theory of a

massless supermultiplet with spins (3, 5/2) using this supercovariant derivative. Then, we

will compare the results with those of the supermatrix model.

3. Superfield formalism of massless supermultiplet (3,5/2)

Now let us construct a superfield formulation of the free 4D, N = 1 supersymmetric field

theory of a massless supermultiplet with spins (3, 5/2) by starting from the supercovariant

derivative (2.7) and (2.13). The construction is similar to supergravity: we should impose

constraints on superfields. One difference is in fixing gauge symmetries which act on

auxiliary fields to eliminate auxiliary component fields. As in the case of supergravity we

can construct on-shell and off-shell formulations. In this section we restrict attention to

on-shell formulation. We give the results of off-shell formulation in appendix C.

Before we begin our analysis, we review some facts about the component formalism

of massless higher spin gauge fields [5]. Totally symmetric tensor field of rank-s φa1···as(x)

and tensor-spinor field of rank-(s−1) ψa1···as−1,α(x) are used to express massless boson and

fermion system of a supermultiplet with spins (s, s − 1
2 ).5 We can construct the theory of

φa1···as(x) and ψa1···as−1
(x) by requiring that the theory has the proper gauge symmetries.

Let us postulate that the theory is invariant under the following gauge transformations:

δφa1···as(x) = ∂(a1
λa2···as)(x), (3.1)

δψa1···as−1,α(x) = ∂(a1
ξa2···as−1),α(x), (3.2)

where the bracket () denotes symmetrization of the flat spacetime indices. The gauge

parameters λa1···as−1
(x) and ξa1···as−2,α(x) are rank-(s − 1) totally symmetric tensor with

the traceless condition ξb
ba1···as−3

= 0 and totally symmetric tensor-spinor with the gamma-

traceless condition (γb)α
βξba1···as−3,β = 0, respectively. If we impose the additional double

traceless constraints φ′′
a1···as−5

= 0 and triple-gamma traceless constraints ψ/′a1···as−5
= 0, we

can find that the gauge invariant free equations of motion for φa1···as(x) and ψa1···as−1,α(x)

are

Wa1···as ≡ ¤φa1···as − s∂(a1
(∂ · φ)a2···as) + s(s − 1)∂(a1

∂a2
φ′

a3···as) = 0, (3.3)

Qa1···as−1,α ≡ (∂/)αβψa1···as−1,
β − (s − 1)∂(a1

ψ/a2···as−1),α = 0, (3.4)

where we use the notations (∂ ·φ)a1 ···as−1
= ∂bφ

b
a1···as−1

, φ′
a1···as−3

= φb
ba1···as−2

,(γa)αβ∂a =

(∂/)αβ and ψ/a,α = (γb)αβψba1···as−2

β.

The conventional formulations for free totally symmetric tensor and tensor-spinor

gauge fields have been originally derived by Fronsdal [1] and Fang-Fronsdal [2], respec-

tively.

5From this section, Latin letters run from 1 to 4 and denote flat spacetime vector indices, and Greek

letters run from 1 to 4 and denote spinor indices.
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3.1 On-shell formulation of supermultiplet (3, 5/2)

In order to deal with the supermultiplet (3, 5/2) in terms of superfield, we keep track of

the second order homogeneous polynomial of the operators ∂a, ∇α and Oab in AA:

AA = i∇A + i2eA
CD(z)∇C∇D +

i2

2
ωA

C,de(z)(∇COde + Ode∇C)

+
i2

2
ΩA

cd,ef(z)(OcdOef + OefOcd), (3.5)

where the supercovariant derivative in flat superspace is defined as

∇a = ∂a, ∇α =
∂

∂θα
+ i(γa)αβθβ∂a. (3.6)

The commutation relations of the operators are given by

[∂a, ∂b] = 0, [∂a,∇α] = 0, {∇α,∇β} = 2i(γa)αβ∇a, (3.7)

[Oab, ∂c] =
1

2
(δac∂b − δbc∂a), [Oab,∇α] = (γab)α

β∇β. (3.8)

In this and the next subsection, in order to deal with free field theories we keep only terms

linear with respect to the component fields and use the flat supercovariant derivatives

defined above.

The dynamical fields which describe the supermultiplet (3, 5/2) are expressed as

φabc(x) =
1

3

(

ea,bc(z) + eb,ca(z) + ec,ab(z)
)

∣

∣

∣

θ=0
, (3.9)

ψab,α(x) =
1

2

(

ea,bα(z) + eb,aα(z)
)

∣

∣

∣

θ=0
, (3.10)

where ea,bc(z) are the coefficients of ∂b∂c and ea,bα(z) are the coefficients of ∂b∇α in (3.5).

As we will see, these relations can be understood by looking at the gauge transformation

properties of these fields. Local superfields appearing in (3.5) have too many unphysical

degrees of freedom to describe the physical system of the massless supermultiplet (3, 5/2).

Thus, in order to construct superfield formulation we must eliminate all the unphysical

degrees of freedom. This is implemented by carrying out the following two procedures

• Imposing constraints on the superfields.

• Fixing the gauge symmetries.

We will perform these procedures in order.

3.1.1 Constraints

There are three types of constraints.6

6The constraints we impose in this subsection are summarized in appendix A. The superspace Bianchi

identities subject to the on-shell constraints are given in appendix B.
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1. The first type of constraints are summarized as follows:

ea,b
b(z) = 0, (3.11)

(γb)α
βea,bβ(z) = 0. (3.12)

As we will see later, we find the gauge transformation laws for ea,bc: δea,bc = ∂aλbc,

and for ea,bβ : δea,bβ = ∂aξbβ. Thus, these constraints are necessary to be consistent

with the traceless constraints on the gauge parameters λb
b = 0 and (γb)α

βξb,β = 0.

2. The second type of constraints are imposed on the field strengths. Field strengths

are the coefficients of the operators in the commutators of Aa and Aα, whose general

expressions are given by the following forms:

[AA,AB ] = −iCAB
CD(z)∇C∇D

−
i

2
RAB

C,de(z)(∇COde + Ode∇C)

−
i

2
FAB

cd,ef (z)(OcdOef + OefOcd). (3.13)

CAB,CD(z) are similar to the torsion tensor in supergravities because they include

the first order derivatives of the vielbein fields ea,bc and ea,bα with respect to x.

RAB,C,de(z) are similar to the curvature tensor because they include the first order

derivatives of the connection ωA,B,cd with respect to x.7 FAB,cd,ef (z) have no analogy

in supergravities because they appear only for spin larger than 2.

We choose the following constraints:

Cab,
cd = Cab

γδ = 0, Caα,
cd = Caα,

γδ = 0, (3.14)

Cαβ,
cd = 2i(γa)αβea

cd, Cαβ,
cγ = 2i(γa)αβea

cγ , Cαβ,
γδ = 2i(γa)αβea

γδ,

(3.15)

Rab
γ,cd = 0, Raα

γ,cd = 0, Rαβ
γ,cd = 2i(γa)αβωa,

γ,cd,

(3.16)

Fab
cd,ef = 0, Faα

cd,ef = 0, Fαβ
cd,ef = 2i(γa)αβΩa,

cd,ef .

(3.17)

The equations of motion for the supermultiplet can be expressed as the constraints

on the field strength:

Caα
cγ = 0. (3.18)

3. The third type of constraints are imposed for the equations of motion to be symmetric

under permutation of the vector indices. The constraint Fab,cd,ef = 0 implies that

Ωa,bc,de(z) can be written as a pure gauge like configuration

Ωa,bc,de(z) = ∂aχbc,de(z), (3.19)

7In analogy with superfield formulations of supergravities, we can regard that the fields eA,BC(z) and

ωA,B,cd(z) are higher spin generalization of supervielbein and superspin connection.
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where the parameter χbc,de satisfies χbc,de = −χcb,de = −χbc,ed.
8 In order to make the

equation of motion for the spin-3 field to be symmetric under permutations of the

vector indices, we should impose

χbc,de(z) = −
1

3
ω[b,c],de(z). (3.20)

The constraint Rab,γ,de = 0 implies that ωa,γ,cd(z) can be written as a pure gauge

configuration

ωa,γ,cd(z) = ∂aηcd,γ(z), (3.21)

where ηcd,γ satisfies ηcd,γ = −ηdc,γ . In order to make the equation of motion for the

spin-5
2 field to be symmetric under permutations of the vector indices, we should

impose

ηcd,γ(z) = −e[c,d],γ(z). (3.22)

Imposing the constraints (3.11), (3.12), (3.14)–(3.18), (3.20) and (3.22), we obtain9

[Aa,Ab] = −iCab,
cγ(z)∂c∇γ −

i

2
Rab,

c,de(z)(∂cOde + Ode∂c), (3.23)

[Aa,Aα] = −
i

2
Raα

c,de(z)(∂cOde + Ode∂c)

{Aα,Aβ} = −2i(γa)αβAa. (3.24)

With all these constraints, using the superspace Bianchi identities we can show that

the equations of motion for spin-5
2 field

(γa)αβCab,c,
β = 0, (3.25)

and for spin-3 field

Rab,c,d
a = 0, (3.26)

are satisfied. These equations can be derived in the same way as in [16, 19].

So far, we have analyzed the elimination of the unphysical degrees of freedom by

imposing constraints. We have found that the equation of motion for spin-3 field (3.26) is

expressed in terms of the second order derivatives of ea,bc and the one for spin-5
2 field (3.25)

8Ωa,bc,de are called extra fields in the Vasiliev theory [11]. In this theory, these fields have been expressed

as the second order derivatives of dynamical fields by imposing appropriate constraints. Furthermore, these

fields have been used to construct higher derivative interactions. In this paper, we have imposed the

constraints (3.20) on Ωa,bc,de. As a consequence of the constraints, the extra fields have been expressed as

the second order derivatives of dynamical fields. Thus, it seems that the roles of the field are equal to those

in the Vasiliev theory. The only difference is that their theory has been formulated in AdS spacetime, while

our theory has been done in flat spacetime.
9Imposing the constraints, the commutators of Aα are written as {Aα,Aβ} = −2i(γa)αβAa −

i(γa)αβωa
γ,cd − i

2
Rαβ

γ.cd. Now, we define R̃αβ
γ,cd ≡ Rαβ

γ,cd + 2(γa)αβωa
γ,cd. From the superspace

Bianchi identity (B.10), we can find that R̃αβ,γ,cd = 0, so {Aα,Aβ} = −2i(γa)αβAa.

– 9 –
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is expressed in terms of the first order derivatives of ea,bα respectively. They are symmetric

under permutations of the vector indices. However, these constraints are not enough to

eliminate all the unphysical degrees of freedom. The equations (3.4) and (3.3) are expressed

in terms of the totally symmetric tensor fields φabc and ψab,α, but the equations (3.25)

and (3.26) are expressed in terms of ea,bc and ea,bα, which have parts that are not totally

symmetric. Thus, we should eliminate these degrees of freedom in order to show that the

lowest components of the equations (3.25) and (3.26) coincide with the equations (3.4)

and (3.3), respectively. We will do these in the next subsubsection.

3.1.2 Gauge fixing

There are two kinds of gauge symmetries 1. dynamical gauge symmetries 2. auxiliary

gauge symmetries. A dynamical gauge symmetry has an action on a dynamical gauge

field defined in (3.9) and (3.10), while an auxiliary gauge symmetry does not act on any

of the dynamical gauge fields. An auxiliary gauge symmetry generates shifts of auxiliary

gauge fields that are not determined in terms of the dynamical gauge fields by solving the

constraints. These undetermined components are exactly those which we have mentioned

in the last part of the previous subsubsection. Thus, we should eliminate these degrees

of freedom by fixing gauge symmetries. Recall that gauge symmetries are embedded in

the superunitary symmetry of the supermatrix model (2.8). We summarize the gauge

transformations as follows:

1. Dynamical gauge transformations

• Λ = λab∂a∂b generates

δea,bc = ∂aλbc, δ(others) = 0, (3.27)

where the parameter λab satisfies λab = λba.

• Λ = ξa,α∂a∇α generates

δea,b,α = ∂aξb,α, δ(others) = 0. (3.28)

2. Auxiliary gauge transformations

• Λ = λ̃a,bc(∂aObc + Obc∂a) generates

δea,bc = λ̃b,ac + λ̃c,ab, δωa,b,cd = ∂aλ̃b,cd, δ(others) = 0, (3.29)

where λ̃a,bc satisfies λ̃a,bc = −λ̃a,cb.

• Λ = λ̃ab,cd(OabOcd + OcdOab) generates

δωa,b,cd = λ̃ab,cd + λ̃cd,ab, δΩa,bc,de = ∂aλ̃bc,de, δ(others) = 0, (3.30)

where λ̃ab,cd satisfies λ̃ab,cd = −λ̃ba,cd = −λ̃ab,dc.
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• Λ = ξ̃ab,α(Oab∇α + ∇αOab) generates

δea,b,α = ξ̃ab,α, δωa,α,cd = ∂aξ̃cd,α, δ(others) = 0, (3.31)

where ξ̃ab,α satisfies ξ̃ab,α = −ξ̃ba,α.

Under the dynamical gauge transformations (3.27) and (3.28), the rank-3 totally sym-

metric tensor field φabc(x) defined in (3.9) and rank-2 totally symmetric tensor-spinor field

ψab,α(x) defined in (3.10) transform as follows :

δφabc(x) = ∂aλbc(x) + ∂bλca(x) + ∂cλab(x), (3.32)

δψab,α(x) = ∂aξb,α(x) + ∂bξa,α(x). (3.33)

These correspond to (3.1) and (3.2), respectively. They are consistent with the identifica-

tions (3.9) and (3.10).

As we will now show, using the auxiliary gauge transformations (3.29), (3.30)

and (3.31), we can eliminate the parts of ea,bc and ea,bα that are not totally symmet-

ric in the vector indices, and we can express dynamical variable in terms of φabc and

ψab,α. We first fix the gauge symmetry (3.31). Gauge fixing can be done by transforming

ea,bα → êa,bα = ea,bα + ξ̃ab,α, with choosing the parameter ξ̃ab,α as

ξ̃ab,α = −ea,b,α + ψab,α +
1

2
(γa)αβψ/b,

β −
1

2
(γb)αβψ/a,

β −
1

3
γabψ

′
α (3.34)

Carrying out this transformation, we can remove the part of ea,bα that is not totally sym-

metric in the vector indices. Substituting êa,bα into the equation (3.25) we can show that

the equation

(γa)αβCab,c
β = 0 (3.35)

coincides with (3.4). Next, we fix the gauge symmetries (3.29) and (3.30). Gauge fixing

can be done by transforming ea,bc → εa,bc = ea,bc + λ̃b,ac + λ̃c,ab and ωa,b,cd → wa,b,cd =

ωa,b,cd + λ̃ab,cd + λ̃cd,ab, by choosing the parameters λ̃a,bc and λ̃ab,cd as we did in [14]. In [14],

carrying out the gauge transformation by those parameters, we have removed the part of

ea,bc that is not totally symmetric in the vector indices, and have shown that the equation

Rab,c,d
a = 0 (3.36)

coincides with (3.3). Thus, we have shown that with all these constraints and gauge fixing,

we obtain the free theory of the supermultiplet (3, 5/2).

Before we close this section, we comment on the generalization of what we have done

to a massless supermultiplet with spins (s, s− 1
2). In order to deal with the supermultiplet,
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we keep track of the (s − 1)th order polynomials of the operators in ∇A and Oab:

AA = i∇A + (i)s−1eA,
A1···As−1(z)∇A1

· · · ∇As−1

+
(i)s−1

s − 1
ωA,

A1···As−2,b1c1(z){∇A1
· · · ∇As−2

Ob1c1}

+
(i)s−1

(s − 1)(s − 2)
ΩA,

A1···As−3,b1c1,b2c2(z){∇A1
· · · ∇As−3

Ob1c1Ob2c2}

+
(i)s−1

(s − 1)(s − 2)(s − 3)
Ω̃(1),A,

A1···As−4,b1c1,b2c2,b3c3(z){∇A1
· · · ∇As−4

Ob1c1Ob2c2Ob3c3}

...

+
(i)s−1

(s − 1)!
Ω̃(s−3),A

b1c1,...,bs−1cs−1(z){Ob1c1 · · · Obs−1cs−1
}. (3.37)

From the discussion in this section, it seems that Ω̃(i)(z)(i = 1, . . . , s−3) are not necessary

to construct a superfield formulation of the supermultiplet (s, s− 1
2). We set these auxiliary

fields to zero: Ω̃1(z) = · · · = Ω̃s−3(z) = 0. Starting from this AA we may construct a

superfield formulation of the massless supermultiplet (s, s − 1
2) using the same method as

the one we have employed in this section.

4. Supermatrix model

Now, with the superfield formulation of the massless supermultiplet (3, 5/2), we can com-

pare the results with those of the supermatrix model. Imposing the constraints in section

3, we obtain the equations of motion of the supermatrix model

[Aa, [Aa,Ab]] = [∂a, Cab,
c,γ∂c∇γ + Rab

c,de(∂cOde + Ode∂c)]

= (∂aCab
cγ)∂c∇γ + (Rab,

c,da)∂c∂d + (∂aRab,
c,de)(∂cOde + Ode∂c) = 0.(4.1)

The equation Rab,
c,da = 0 coincides with (3.26). ∂aRab,

c,de = 0 follows from the superspace

Bianchi identity (B.3) by contracting a and e. ∂aCab,
cγ = 0 is obtained by multiplying

(γa)γα∇γ to (B.5). Therefore, we have shown that solutions of the equations of motion

for the massless supermultiplet (3, 5/2) satisfy the equations of motion of the supermatrix

model (4.1).

5. Conclusions and future works

In this paper, we have studied the relation between a supermatrix model and the free 4D,

N = 1 supersymmetric field theory of a massless supermultiplet with spins (3, 5/2) on

the basis of [16]. In order to do this, we have constructed a superfield formulation of the

supermultiplet. Then, we have shown that solutions of the equations of motion for the

supermultiplet satisfy the equations of motion of the supermatrix model. It is difficult to

show the converse that is to derive the equations of motion for the supermultiplet from

the equations of motion of the supermatrix model. We may generalize what we have done
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in this paper to the supermultiplet (s, s − 1
2) using the same method as the one we have

employed.

A superfield formulation of massless higher spin gauge theory in four-dimensional AdS

spacetime has been constructed in [22]. In [22], the authors have given the on-shell su-

perspace constraints. They have also shown that the linearized constraints describe the

free equations of motion of higher spin fields with cosmological constant. In the case of

the supermultiplet (3, 5/2), it seems that the linearized constraints are equal to those we

have imposed. The only difference is that we have formulated in flat spacetime, while

they have done in AdS spacetime. Their theory may be useful to construct interacting

supersymmetric higher spin gauge theories by matrix models.

There are several things which should be studied further. One is to investigate the

tensor fields which are not totally symmetric in the spacetime vector indices can be included

in matrix models. Viewed from matrix models, field strengths should be introduced as

independent degrees of freedom. There is a possibility that “field strengths” propagate as

tensor fields that are not totally symmetric. This possibility has been studied in [23]. The

authors have investigated that the fields appear as the coefficients of terms linear in the

covariant derivative and local Lorentz generators. They have found that some components

of the torsion can be identified with a scalar and rank-2 antisymmetric tensor field, and

have shown that the equations of these fields can be derived from that of a matrix model.

It is interesting to extend this analysis to the fields that appear as coefficients of higher

order terms in covariant derivative and local Lorentz generators.

Another thing to be pursue is to construct the interacting massless higher spin gauge

field theory. Difficulties associated with the requirement of gauge invariance can be over-

come by using the matrix model because it has gauge invariance manifestly.
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A. Summary of constraints

1. Constraints on component fields:

ea,b
b = 0, (A.1)

(γb)α
βea,b,β = 0. (A.2)

2. Constraints on superfield strengths

Off-shell constraints:

Cab,
cd = Cab,

γδ = 0, Caα,
cd = Caα,

γδ = 0, (A.3)

Cαβ,
cd = 2i(γa)αβea,

cd, Cαβ,
cγ = 2i(γa)αβea,

cγ , Cαβ,
γδ = 2i(γa)αβea,

γδ.(A.4)

Rab,
γ,cd = Raα

γ,cd = 0, Rαβ
γ,cd = 2i(γa)αβωa,

γ,cd. (A.5)

Fab,
cd,ef = Faα

cd,ef = 0, Fαβ
cd,ef = 2i(γa)αβΩa,

cd,ef . (A.6)
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On-shell constraints:

Caα
cγ = 0. (A.7)

3. Constraints on “pure gauge” field:

χbc,de = −
1

3
ω[bc],de, (A.8)

ηcd,γ = −e[c,d],γ. (A.9)

B. Bianchi identities

We give the superspace Bianchi identities subject to the con-

straints (A.1), (A.2), (A.3), (A.4), (A.5), (A.6), (A.7), (A.8) and (A.9).

1. [Aa, [Ab,Ac]] + [Ab, [Ac,Aa]] + [Ac, [Aa,Ab]] = 0 gives

∂[aCbc]
dδ = 0, (B.1)

R[ab,
d,e

c] = 0, (B.2)

∂[aRbc]
d,ef = 0. (B.3)

2. [Aa, [Ab,Aα]] + [Ab, [Aα,Aa]] + [Aα, [Aa,Ab]] = 0 gives

2i(γd)αβCab,
cβ +

1

2
Rbα,

c,d
a −

1

2
Raα,

c,d
b = 0, (B.4)

∇αCab
cβ +

1

2
Rab

c,de(γde)α
β = 0, (B.5)

∇αRab
c,de + ∂aRbα,

c,de − ∂bRaα,
c,de = 0. (B.6)

3. [Aa, {Aα,Aβ}] + {Aα, [Aβ,Aa]} − {Aβ , [Aa,Aα]} = 0 gives

R̃αβ,
c,d

e = 0, (B.7)

2(γb)αβCab,
cγ +

1

2
Raβ,

c,de(γde)α
γ +

1

2
Raα,

c,de(γde)β
γ = 0, (B.8)

2(γb)αβRab
c,de + ∇αRaβ,

c,de + ∇βRaα,
c,de = 0. (B.9)

4. [Aα, {Aβ ,Aγ}] + [Aβ, {Aγ ,Aα}] + [Aγ , {Aα,Aβ}] = 0 gives

R̃(αβ
c,de(γde)γ)

δ = 0, (B.10)

2(γa)(αβRaγ)
c,de + ∇(αR̃βγ)

c,de = 0. (B.11)

C. Solution of the Bianchi identities

In this appendix, we give the results of an off-shell superfield formulation for the theory

of a massless supermultiplet with spins (3, 5/2). To construct the formalism, we should

impose the off-shell constraints which reduce the number of components, and solve Bianchi
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identities subject to the off-shell constraints. We can find that the Bianchi identities reduce

the number of independent superfields to one complex vector field Ra, one real symmetric-

traceless tensor Gab and one chiral superfield Wa,αβγ . We can find explicit expressions for

the superfield strengths in terms of these superfields.

As in the case of supergravity, the lowest components of Ra and Gab with respect to θ

are physical degrees of freedom. The counting of field components are as follows:

Bosonic φabc(x) λab(x) Ra(x) Gab(x)

+20 −9 +8 +9 = 28

Fermionic ψab,α(x) ξa,α(x)

+40 −12 = 28
Therefore, the number of bosonic and fermionic degrees of freedom are equal.

Here we use a two spinor notation of [20]. The coordinates of flat superspace are

denoted by zA = (xa, θα, θ̄α̇). Latin indices a denote Lorentz tensor indices, Greek indices

(α, α̇) denote spinor indices. Covariant derivatives in flat superspace are defined as follows

∇a = ∂a, (C.1)

∇α =
∂

∂θα
+ iσa

αα̇θ̄α̇∂a, (C.2)

∇α̇ = −
∂

∂θ̄α̇
− iθασa

αα̇∂a. (C.3)

We list the results of the off-shell constraints and the solution of superspace Bianchi

identities.

Constraints. We impose constraints on superfield strengths. The commutators of AA

can be written as follows:

[AA,AB} = −iCAB
CD∇C∇D −

i

2
RAB

D,ef(∇DOef + Oef∇D)

−
i

2
FAB

cd,ef (OcdOef + OefOcd). (C.4)

We choose the following constraints on superfield strengths:

Cab,cd = Cab,γδ = Cab,γδ̇ = 0, Caα,cd = Caα,γδ = Caα,γ̇δ̇ = Caα,γδ̇ = 0 (C.5)

Cαβ,cd = Cαβ,dδ = C
αβ,dδ̇

= C
αβ,γ̇δ̇

= C
αβ,γδ̇

= Cαβ,γδ = 0 (C.6)

Cαα̇,cd = 2i(σa)αα̇ea,cd, Cαα̇,dδ = 2i(σa)αα̇ea,dδ , (C.7)

Cαα̇,γδ = 2i(σa)αα̇ea,γδ , C
αα̇,δδ̇

= 2i(σa)αα̇e
a,δδ̇

. (C.8)

Rab,δ,cd = 0, Raα,δ,cd = R
aα,δ̇,cd

= 0, Rαβ,δ,cd = R
αβ,δ̇,cd

= 0, (C.9)

Rαα̇,δ,cd = 2i(σa)αα̇ωa,δ,cd, (C.10)

Fab,cd,ef = 0, Faα,cd,ef = 0, Fαβ,cd,ef = 2i(σa)αα̇Ωa,cd,ef , (C.11)

Rαα̇,δ
δ̇
,βγ = 0, Cαα̇β,δ

α̇
γ = 0, (C.12)

and their complex conjugates. Here, we define R
αα̇,δδ̇,βγ

≡ (σd)
δδ̇

Rαα̇,d,βγ and C
αα̇β,δδ̇γ

≡

(σd)
δδ̇

Cαα̇β,dγ .
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Solution of the Bianchi identities.

1. Constraints on the superfields W , G and R

∇α̇Rc = 0, (C.13)

∇αG
c,αβ̇

= ∇
β̇
R†

c, (C.14)

∇α̇Wc,βγδ = 0, (C.15)

∇αWc,αβδ +
i

2
(∇ββ̇Gc,δ

β̇ + ∇δβ̇Gc,β
β̇) = 0, (C.16)

G†
c,αα̇ = Gc,αα̇, (C.17)

W †
c,αβδ = W c,α̇β̇δ̇, (C.18)

Gγγ̇,αα̇ = (σc)γγ̇Gc,αα̇ = G(γα)(γ̇ α̇), (C.19)

and their complex conjugates.

As a consequence of the constraints (C.12), Ga,b has only the traceless symmetric

components.

2. Torsion

Cαα̇β̇,cδ = (σa)αα̇Caβ̇,cδ = −2iǫβ̇α̇ǫαδRc, (C.20)

Cαα̇β,cδ = (σa)αα̇Caβ,cδ =
i

4
(ǫαδGc,βα̇ − 3ǫβαGδα̇ − 3ǫβδGc,αα̇), (C.21)

Cαα̇ββ̇,cδ̇ = −2ǫαβW α̇β̇δ̇,c −
1

2
ǫαβ(ǫδ̇β̇∇

ǫGc,ǫα̇ + ǫδ̇α̇∇
ǫGc,ǫβ̇)

+
1

2
ǫ
α̇β̇

(∇αG
c,βδ̇

+ ∇βG
c,αδ̇

), (C.22)

and their complex conjugates.

3. Curvature

R
α̇β̇,c,δ̇ǫ̇

= 4(ǫα̇ǫ̇ǫβ̇δ̇
+ ǫ

β̇ǫ̇
ǫ
α̇δ̇

)Rc, (C.23)

R
α̇β̇,c,δǫ

= 0, (C.24)

Rαα̇,c,βδ = ǫβαGc,δα̇ + ǫδαGc,βα̇, (C.25)

Rαα̇β,c,δǫ =
i

2
(ǫβα∇δ + ǫβδ∇α)Gc,ǫα̇ +

i

2
(ǫβδ∇ǫ + ǫβǫ∇α)Gc,δα̇

+i(ǫǫβǫαδ + ǫδβǫαǫ)∇
ζGc,ζα̇, (C.26)

R
αα̇β,c,δ̇ǫ̇

= 4iǫβαW
c,α̇δ̇ǫ̇

+
i

2
(ǫ

α̇δ̇
∇βGc,αǫ̇ + ǫα̇ǫ̇∇βG

c,αδ̇
), (C.27)

R
αα̇ββ̇,c,δδ̇ǫǫ̇

= (σa)αα̇(σb)
ββ̇

(σd)
δδ̇

(σe)ǫǫ̇Rab,c,de (C.28)

= 4ǫαβǫδǫXc,(α̇β̇)(δ̇ǫ̇) + 4ǫα̇β̇ǫδ̇ǫ̇Xc,(αβ)(δǫ)

−4ǫαβǫ
δ̇ǫ̇

Ψ
c,(α̇β̇)(δǫ) − 4ǫ

α̇β̇
ǫδǫΨc,(αβ)(δ̇ǫ̇), (C.29)

Ψ
c,(αβ)(δ̇ǫ̇) = Ψ

c,(δ̇ǫ̇)(αβ), (C.30)
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Xc,(αβ)(δǫ) = −
1

4
(∇αWc,βδǫ + ∇βWc,δǫα + ∇δWc,ǫαβ + ∇ǫWc,αβδ)

+
1

16
(∇

ζ̇
∇

ζ̇
R†

c + ∇ζ∇ζRc), (C.31)

Ψ
c,(αβ)(δ̇ǫ̇) =

i

8
(∇

βδ̇
Gc,αǫ̇ + ∇

αδ̇
Gc,βǫ̇ + ∇βǫ̇Gc,αδ̇

+ ∇αǫ̇Gc,βδ̇
)

+
1

8
(∇

δ̇
∇βGc,αǫ̇ + ∇

δ̇
∇αGc,βǫ̇ + ∇ǫ̇∇βG

c,αδ̇
+ ∇ǫ̇∇αG

c,βδ̇
),(C.32)

and their complex conjugates.

All other components vanish.
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